Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-2-((1*R*)-1-{[(*R*)-(2-chlorophenyl)(cyclopentyl)methyl]amino}ethyl)phenol

Guang-You Zhang,^a Ting Yang,^a* Bao-Wang Xu,^b Di-Juan Chen^a and Wan-Hui Wang^c

^aSchool of Chemistry, Jinan University, Jinan 250022, People's Republic of China, ^bQilu Pharmaceutical Co. Ltd, Shandong Province, Shandong 250100, People's Republic of China, and ^cGraduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura, Saitama 338-8570, Japan Correspondence e-mail: yangting365@126.com

Received 11 October 2008; accepted 23 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.113; data-to-parameter ratio = 16.3.

The title compound, $C_{20}H_{23}Cl_2NO$, was prepared by condensation of (*R*)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, resulting in the formation of a new chiral center. The structural analysis confirms the absolute configuration of the title compound and the formation of the (*R*,*R*) diastereoisomer. There is an intramolecular $O-H \cdots N$ hydrogen bond which stabilizes the conformation of the molecule. The molecules are linked to each other through weak $C-H \cdots \pi$ interactions.

Related literature

For general background, see: Ager *et al.* (1996); Berrisford *et al.* (1995); Cimarelli & Palmieri (1998); Cimarelli *et al.* (2001, 2002); Hayase *et al.* (1997); Nakano *et al.* (1997); Palmieri (1999, 2000); Soai & Niwa (1992); Watanabe *et al.* (1991); Xu & Pu (2004); Yang *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{23}Cl_2NO\\ M_r = 364.29\\ Orthorhombic, P2_12_12_1\\ a = 11.286 \ (2) \ \text{\AA}\\ b = 11.539 \ (2) \ \text{\AA}\\ c = 14.740 \ (3) \ \text{\AA} \end{array}$

V = 1919.5 (6) Å³ Z = 4 Mo K radiation μ = 0.34 mm⁻¹ T = 298 (2) K 0.42 × 0.29 × 0.18 mm Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
T_{min} = 0.869, T_{max} = 0.941
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.048 \qquad \Delta \rho \\ wR(F^2) &= 0.113 \qquad \Delta \rho \\ S &= 1.02 \qquad \text{Ab} \\ 3573 \text{ reflections} \qquad 1219 \text{ parameters} \qquad \text{Fla} \\ \text{H-atom parameters constrained} \end{split}$$

10145 measured reflections 3573 independent reflections 2761 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

 $\begin{array}{l} \Delta \rho_{max} = 0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.22 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1629 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.03 \mbox{ (8)} \end{array}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline O1 - H1A \cdots N1 \\ C3 - H3 \cdots Cg1^{i} \end{array}$	0.82	1.92	2.639 (3)	146
	0.93	2.76	3.661 (3)	164

Symmetry code: (i) $-x + \frac{3}{2}, -y + 2, z - \frac{1}{2}$. Cg is the centroid of the C15–C20 benzene ring

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2393).

References

- Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-875.
- Berrisford, D. J., Bolm, C. & Sharpless, K. B. (1995). Angew. Chem. Int. Ed. Engl. 34, 1059–1070.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cimarelli, C., Mazzanti, A., Palmieri, G. & Volpini, E. (2001). J. Org. Chem. 66, 4759–4765.
- Cimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711-15720.
- Cimarelli, C., Palmieri, G. & Volpini, E. (2002). *Tetrahedron Asymmetry*, **13**, 2011–2018.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hayase, T., Sugiyama, T., Suzuki, M., Shibata, T. & Soai, K. (1997). J. Fluorine Chem. 84, 1–5.
- Nakano, H., Kumagai, N., Matsuzaki, H., Kabuto, C. & Hongo, V. (1997). Tetrahedron Asymmetry, 8, 1391–1401.
- Palmieri, G. (1999). Eur. J. Org. Chem. pp. 805-811.
- Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361-3373.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soai, K. & Niwa, S. (1992). Chem. Rev. 92, 833-856.

Watanabe, V., Araki, V. & Butsugan, V. (1991). J. Org. Chem. 56, 2218–2224. Xu, M. H. & Pu, L. (2004). Org. Lett. 4, 4555-4557.

Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, 0262–0264.

supplementary materials

Acta Cryst. (2008). E64, o2211-o2212 [doi:10.1107/S1600536808034624]

4-Chloro-2-((1R)-1-{[(R)-(2-chlorophenyl)(cyclopentyl)methyl]amino}ethyl)phenol

G.-Y. Zhang, T. Yang, B.-W. Xu, D.-J. Chen and W.-H. Wang

Comment

The synthesis of enantiopure amine alcohols with a variety of functionalities is an important subject of research because this class of compounds has found widespread application in biological systems showing pharmacological activity. These compounds are used as resolving agents, chiral bases and auxiliaries in asymmetric synthesis (Cimarelli *et al.*,2002), and most have been derived from new readily available natural products (Ager *et al.*,1996). Chiral aminophenols, which are similar to aminoalcohols, are important building blocks in organic synthesis, and have attracted increasing attention in recent years owing to their effects in asymmetric synthesis and asymmetric induction (Cimarelli *et al.*,2001; Palmieri, 1999, 2000; Xu & Pu, 2004; Berrisford *et al.*, 1995; Cimarelli & Palmieri, 1998; Hayase *et al.*, 1997; Nakano *et al.*,1997; Soai *et al.*, 1992; Watanabe *et al.*, 1991).

As part of our continuing studies of chiral aminophenols, we have established the molecular structure of the title compound which was initially synthesized to test its asymmetric catalytic activity. The compound has been prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, resulting in the formation of a new chiral center as shown in Fig. 1.

The structural analyses confirms the absolute configuration of the title compound and the formation of the (*R*,*R*) diastereoisomer. There is an intramolecular O-H···N hydrogen bond which stabilizes the conformation of the molecule. The molecules are linked to each other through weak C-H··· π interaction involving the C15-C20 benzene ring (Table 1).

Experimental

The title compound were prepared according to the procedure of Yang *et al.*(2005). (*R*)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(5-chloro-2-hydroxyphenyl)ethanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH₄ (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml)was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na₂CO₃, then extracted with CHCl₃, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silicagel chromatography (chloroform) to give a colourless solid (yield 83.5%). Crystals of (I) were grown from a n-hexane.

Refinement

All H atoms were included in calculated positions and treated as riding on their parent atoms, with N—H = 0.90 Å, O—H = 0.82 Å, aromatic C—H = 0.93 Å, methyl C—H =0.96 Å, methylene C—H =0.97 Å and methine C—H = 0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N,O)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. Molecular view of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. H bond is shown as dashed line.

4-Chloro-2-((1R)-1-{[(R)-(2- chlorophenyl)(cyclopentyl)methyl]amino}ethyl)phenol

Crystal data	
C ₂₀ H ₂₃ Cl ₂ NO	$F_{000} = 768$
$M_r = 364.29$	$D_{\rm x} = 1.261 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2608 reflections
a = 11.286 (2) Å	$\theta = 2.2 - 20.5^{\circ}$
<i>b</i> = 11.539 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 14.740(3) Å	T = 298 (2) K
V = 1919.5 (6) Å ³	Block, colourless
Z = 4	$0.42 \times 0.29 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3573 independent reflections
Radiation source: fine-focus sealed tube	2761 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 298(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -13 \rightarrow 13$
$T_{\min} = 0.869, \ T_{\max} = 0.941$	$k = -13 \rightarrow 11$
10145 measured reflections	$l = -17 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.3378P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.113$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$

3573 reflections $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ 219 parametersExtinction correction: nonePrimary atom site location: structure-invariant direct
methodsAbsolute structure: Flack (1983), 1629 Friedel pairsSecondary atom site location: difference Fourier mapFlack parameter: 0.03 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4448 (2)	0.9053 (2)	0.71545 (19)	0.0527 (7)
C2	0.5587 (2)	0.9243 (2)	0.68485 (16)	0.0450 (6)
C3	0.5716 (3)	1.0086 (2)	0.61779 (19)	0.0583 (7)
H3	0.6468	1.0242	0.5952	0.070*
C4	0.4774 (3)	1.0688 (3)	0.5843 (2)	0.0662 (9)
H4	0.4891	1.1245	0.5395	0.079*
C5	0.3652 (3)	1.0476 (3)	0.6164 (2)	0.0702 (9)
Н5	0.3007	1.0886	0.5939	0.084*
C6	0.3501 (3)	0.9649 (3)	0.6822 (2)	0.0679 (9)
Н6	0.2746	0.9494	0.7043	0.082*
C7	0.6676 (2)	0.8606 (2)	0.71942 (18)	0.0494 (7)
H7	0.6412	0.8068	0.7667	0.059*
C8	0.7239 (3)	0.7890 (3)	0.6445 (2)	0.0597 (8)
H8	0.7496	0.8417	0.5963	0.072*
C9	0.8298 (3)	0.7153 (3)	0.6731 (3)	0.0842 (11)
H9A	0.9015	0.7616	0.6749	0.101*
H9B	0.8168	0.6814	0.7324	0.101*
C10	0.8389 (4)	0.6226 (4)	0.6016 (3)	0.1137 (16)
H10A	0.8922	0.6467	0.5536	0.136*
H10B	0.8687	0.5512	0.6278	0.136*
C11	0.7165 (4)	0.6053 (4)	0.5653 (3)	0.1091 (15)
H11A	0.7171	0.6091	0.4995	0.131*
H11B	0.6863	0.5301	0.5834	0.131*
C12	0.6404 (3)	0.6996 (3)	0.6033 (2)	0.0747 (10)
H12A	0.5877	0.6688	0.6493	0.090*
H12B	0.5930	0.7345	0.5557	0.090*
C13	0.7159 (3)	1.0138 (3)	0.83381 (19)	0.0558 (7)
H13	0.6433	1.0529	0.8140	0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	0.8106 (4)	1.1051 (3)	0.8523 (2)	0.0835 (11)
H14A	0.8828	1.0677	0.8705	0.125*
H14B	0.7842	1.1557	0.8999	0.125*
H14C	0.8245	1.1494	0.7983	0.125*
C15	0.6889 (3)	0.9446 (3)	0.91861 (19)	0.0537 (7)
C16	0.6008 (3)	0.9804 (3)	0.9767 (2)	0.0606 (8)
H16	0.5558	1.0452	0.9620	0.073*
C17	0.5781 (3)	0.9215 (4)	1.0566 (2)	0.0757 (10)
C18	0.6416 (5)	0.8248 (4)	1.0777 (3)	0.0969 (15)
H18	0.6254	0.7844	1.1308	0.116*
C19	0.7279 (4)	0.7875 (3)	1.0216 (3)	0.0909 (14)
H19	0.7700	0.7207	1.0362	0.109*
C20	0.7551 (3)	0.8472 (3)	0.9425 (2)	0.0669 (9)
Cl1	0.41737 (8)	0.79949 (9)	0.79694 (7)	0.0876 (3)
Cl2	0.47184 (9)	0.97355 (14)	1.13076 (7)	0.1212 (5)
N1	0.75723 (19)	0.9378 (2)	0.76056 (16)	0.0590 (6)
01	0.8465 (2)	0.8094 (2)	0.89205 (18)	0.0974 (9)
H1A	0.8471	0.8437	0.8433	0.146*
H1	0.7853	0.9784	0.7146	0.117*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0501 (16)	0.0547 (17)	0.0533 (16)	-0.0074 (14)	0.0004 (14)	0.0055 (13)
C2	0.0518 (15)	0.0445 (14)	0.0386 (14)	-0.0076 (13)	-0.0041 (12)	-0.0018 (12)
C3	0.0571 (17)	0.0609 (18)	0.0567 (17)	-0.0135 (15)	-0.0047 (15)	0.0086 (15)
C4	0.088 (2)	0.0532 (19)	0.0577 (19)	-0.0095 (18)	-0.0138 (18)	0.0100 (15)
C5	0.074 (2)	0.063 (2)	0.074 (2)	0.0047 (18)	-0.0227 (19)	0.0004 (19)
C6	0.0472 (15)	0.078 (2)	0.079 (2)	-0.0036 (16)	-0.0035 (15)	0.0018 (19)
C7	0.0468 (15)	0.0528 (16)	0.0485 (16)	-0.0063 (13)	-0.0026 (13)	0.0001 (13)
C8	0.0586 (17)	0.0647 (19)	0.0558 (18)	-0.0008 (15)	-0.0021 (15)	-0.0062 (15)
C9	0.0568 (19)	0.093 (3)	0.102 (3)	0.013 (2)	-0.0081 (18)	-0.028 (2)
C10	0.088 (3)	0.124 (3)	0.129 (4)	0.024 (3)	-0.010 (3)	-0.059 (3)
C11	0.098 (3)	0.097 (3)	0.132 (4)	0.014 (3)	-0.008 (3)	-0.052 (3)
C12	0.068 (2)	0.077 (2)	0.079 (2)	0.0014 (19)	-0.0103 (18)	-0.0250 (19)
C13	0.0533 (16)	0.0598 (17)	0.0544 (17)	-0.0024 (15)	-0.0074 (14)	-0.0045 (14)
C14	0.099 (3)	0.082 (2)	0.069 (2)	-0.028 (2)	-0.001 (2)	-0.0123 (19)
C15	0.0525 (16)	0.0569 (17)	0.0516 (16)	-0.0085 (15)	-0.0162 (14)	-0.0034 (14)
C16	0.0534 (17)	0.070 (2)	0.0587 (19)	-0.0094 (16)	-0.0122 (15)	0.0018 (16)
C17	0.070 (2)	0.095 (3)	0.062 (2)	-0.035 (2)	-0.0145 (18)	0.000(2)
C18	0.145 (4)	0.086 (3)	0.060 (2)	-0.051 (3)	-0.037 (3)	0.013 (2)
C19	0.143 (4)	0.059 (2)	0.071 (3)	-0.007 (2)	-0.057 (3)	0.001 (2)
C20	0.081 (2)	0.059 (2)	0.060 (2)	0.0069 (18)	-0.0332 (18)	-0.0136 (16)
Cl1	0.0671 (5)	0.1041 (7)	0.0916 (6)	-0.0106 (5)	0.0140 (5)	0.0452 (5)
Cl2	0.0834 (6)	0.2043 (14)	0.0759 (6)	-0.0444 (8)	0.0151 (5)	-0.0046 (8)
N1	0.0475 (13)	0.0749 (17)	0.0547 (14)	-0.0100 (13)	-0.0024 (11)	-0.0098 (13)
01	0.1023 (19)	0.102 (2)	0.0875 (18)	0.0454 (17)	-0.0382 (15)	-0.0257 (16)

Geometric parameters (Å, °)

C1—C6	1.363 (4)	C11—H11A	0.9700
C1—C2	1.379 (4)	C11—H11B	0.9700
C1—Cl1	1.740 (3)	C12—H12A	0.9700
С2—С3	1.394 (4)	C12—H12B	0.9700
C2—C7	1.520 (4)	C13—N1	1.468 (3)
C3—C4	1.363 (4)	C13—C15	1.515 (4)
С3—Н3	0.9300	C13—C14	1.525 (4)
C4—C5	1.373 (5)	С13—Н13	0.9800
С4—Н4	0.9300	C14—H14A	0.9600
C5—C6	1.371 (5)	C14—H14B	0.9600
С5—Н5	0.9300	C14—H14C	0.9600
С6—Н6	0.9300	C15—C16	1.375 (4)
C7—N1	1.477 (3)	C15—C20	1.394 (4)
С7—С8	1.518 (4)	C16—C17	1.384 (4)
С7—Н7	0.9800	C16—H16	0.9300
C8—C12	1.524 (4)	C17—C18	1.363 (6)
C8—C9	1.526 (4)	C17—Cl2	1.730 (4)
С8—Н8	0.9800	C18—C19	1.348 (6)
C9—C10	1.504 (5)	C18—H18	0.9300
С9—Н9А	0.9700	C19—C20	1.389 (5)
С9—Н9В	0.9700	С19—Н19	0.9300
C10—C11	1.495 (6)	C20—O1	1.344 (4)
C10—H10A	0.9700	N1—H1	0.8826
C10—H10B	0.9700	01—H1A	0.8200
C11—C12	1.495 (5)		
C6—C1—C2	122.2 (3)	C10-C11-H11A	110.2
C6—C1—Cl1	117.6 (2)	C12—C11—H11B	110.2
C2—C1—Cl1	120.2 (2)	C10—C11—H11B	110.2
C1—C2—C3	116.1 (3)	H11A—C11—H11B	108.5
C1—C2—C7	124.5 (2)	C11—C12—C8	106.7 (3)
C3—C2—C7	119.4 (2)	C11—C12—H12A	110.4
C4—C3—C2	122.1 (3)	C8—C12—H12A	110.4
С4—С3—Н3	118.9	C11—C12—H12B	110.4
С2—С3—Н3	118.9	C8—C12—H12B	110.4
C3—C4—C5	120.2 (3)	H12A—C12—H12B	108.6
С3—С4—Н4	119.9	N1—C13—C15	110.8 (2)
С5—С4—Н4	119.9	N1—C13—C14	108.8 (2)
C6—C5—C4	118.9 (3)	C15—C13—C14	110.9 (2)
С6—С5—Н5	120.6	N1—C13—H13	108.7
С4—С5—Н5	120.6	C15—C13—H13	108.7
C1—C6—C5	120.5 (3)	C14—C13—H13	108.7
C1—C6—H6	119.7	C13—C14—H14A	109.5
С5—С6—Н6	119.7	C13—C14—H14B	109.5
N1—C7—C8	109.9 (2)	H14A—C14—H14B	109.5
N1—C7—C2			100.5
	113.6(2)	C13-C14-H14C	109.5
C8—C7—C2	113.6 (2) 111.0 (2)	C13-C14-H14C H14A-C14-H14C	109.5

supplementary materials

N1—C7—H7	107.4	H14B—C14—H14C	109.5
С8—С7—Н7	107.4	C16—C15—C20	118.2 (3)
С2—С7—Н7	107.4	C16—C15—C13	120.0 (3)
C7—C8—C12	113.6 (2)	C20-C15-C13	121.7 (3)
С7—С8—С9	115.5 (3)	C15—C16—C17	121.1 (3)
C12—C8—C9	102.5 (3)	C15-C16-H16	119.4
С7—С8—Н8	108.3	C17—C16—H16	119.4
С12—С8—Н8	108.3	C18—C17—C16	119.9 (4)
С9—С8—Н8	108.3	C18—C17—Cl2	120.3 (3)
С10—С9—С8	104.9 (3)	C16—C17—Cl2	119.8 (3)
С10—С9—Н9А	110.8	C19—C18—C17	120.2 (4)
С8—С9—Н9А	110.8	C19—C18—H18	119.9
С10—С9—Н9В	110.8	C17—C18—H18	119.9
С8—С9—Н9В	110.8	C18—C19—C20	121.1 (4)
Н9А—С9—Н9В	108.8	C18—C19—H19	119.5
C11—C10—C9	106.4 (3)	С20—С19—Н19	119.5
C11—C10—H10A	110.4	O1—C20—C19	118.2 (3)
C9—C10—H10A	110.4	O1—C20—C15	122.2 (3)
C11—C10—H10B	110.4	C19—C20—C15	119.5 (4)
С9—С10—Н10В	110.4	C13—N1—C7	116.4 (2)
H10A—C10—H10B	108.6	C13—N1—H1	111.2
C12-C11-C10	107.4 (3)	C7—N1—H1	104.5
C12—C11—H11A	110.2	C20—O1—H1A	109.5
C6—C1—C2—C3	0.2 (4)	C7—C8—C12—C11	-154.8 (3)
Cl1—C1—C2—C3	178.3 (2)	C9—C8—C12—C11	-29.4 (4)
C6—C1—C2—C7	179.9 (3)	N1-C13-C15-C16	-148.4 (2)
Cl1—C1—C2—C7	-1.9 (4)	C14-C13-C15-C16	90.6 (3)
C1—C2—C3—C4	0.0 (4)	N1-C13-C15-C20	34.8 (4)
C7—C2—C3—C4	-179.8 (3)	C14—C13—C15—C20	-86.2 (3)
C2—C3—C4—C5	0.0 (5)	C20-C15-C16-C17	-0.1 (4)
C3—C4—C5—C6	-0.2 (5)	C13-C15-C16-C17	-177.1 (3)
C2—C1—C6—C5	-0.3 (5)	C15-C16-C17-C18	-1.6 (5)
Cl1—C1—C6—C5	-178.5 (2)	C15-C16-C17-Cl2	176.6 (2)
C4—C5—C6—C1	0.3 (5)	C16-C17-C18-C19	1.2 (5)
C1—C2—C7—N1	-119.6 (3)	Cl2—C17—C18—C19	-177.0 (3)
C3—C2—C7—N1	60.2 (3)	C17-C18-C19-C20	1.0 (6)
C1—C2—C7—C8	116.1 (3)	C18-C19-C20-O1	176.3 (3)
C3—C2—C7—C8	-64.2 (3)	C18—C19—C20—C15	-2.7 (5)
N1—C7—C8—C12	175.2 (3)	C16-C15-C20-O1	-176.8 (3)
C2—C7—C8—C12	-58.3 (3)	C13-C15-C20-O1	0.1 (4)
N1—C7—C8—C9	57.2 (3)	C16-C15-C20-C19	2.2 (4)
C2—C7—C8—C9	-176.4 (3)	C13—C15—C20—C19	179.1 (3)
C7—C8—C9—C10	158.9 (3)	C15—C13—N1—C7	70.8 (3)
C12—C8—C9—C10	34.8 (4)	C14—C13—N1—C7	-166.9 (3)
C8—C9—C10—C11	-27.7 (5)	C8—C7—N1—C13	179.4 (2)
C9—C10—C11—C12	9.1 (5)	C2—C7—N1—C13	54.4 (3)
C10—C11—C12—C8	13.0 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O1—H1A…N1	0.82	1.92	2.639 (3)	146
C3—H3···Cg1 ⁱ	0.93	2.76	3.661 (3)	164
Symmetry codes: (i) $-x+3/2$, $-y+2$, $z-1/2$.				

